Квадратичная форма - Definition. Was ist Квадратичная форма
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Квадратичная форма - definition

Закон инерции Сильвестра; Закон инерции (математика)

КВАДРАТИЧНАЯ ФОРМА         
форма 2-й степени n переменных , т. е. однородный многочлен 2-й степени. Общий вид:,где коэффициент - постоянные.
Квадратичная форма         

форма 2-й степени от n переменных x1, x2,..., xn, т. е. многочлен от этих переменных, каждый член которого содержит либо квадрат одного из переменных, либо произведение двух различных переменных. Общий вид К. ф. при n = 2:

,

при n = 3:

,

где a, b,..., f - какие-либо числа. Произвольная К. ф. записывается так:

;

причём считают, что aij = aji. К. ф. от 2, 3 и 4 переменных непосредственно связаны с теорией линий (на плоскости) и поверхностей (в пространстве) 2-го порядка: в декартовых координатах уравнение линии и поверхности 2-го порядка, отнесённых к центру, имеет вид А (х) = 1, т. е. его левая часть является К. ф.; в однородных координатах левая часть любого уравнения линии и поверхности 2-го порядка является К. ф. При замене переменных x1, x2,..., xn др. переменными y1, y2,..., yn, являющимися линейными комбинациями старых переменных, К. ф. переходит в другую К. ф. Путём соответствующего выбора новых переменных (невырожденного линейного преобразования) можно привести К. ф. к виду суммы квадратов переменных, умноженных на некоторые числа. При этом ни число квадратов (ранг К. ф.), ни разность между числом положительных и числом отрицательных коэффициентов при квадратах (сигнатура К. ф.) не зависят от способа приведения К. ф. к сумме квадратов (закон инерции). Указанное приведение можно осуществить даже специальными (т. н. ортогональными) преобразованиями. Геометрически в этом случае такое преобразование соответствует приведению линии или поверхности 2-го порядка к главным осям.

При рассмотрении комплексных переменных изучаются К. ф. вида

где - число, комплексно сопряженное с xj. Если, кроме того, такая К. ф. принимает только действительные значения (это будет, когда (), то её называют эрмитовой. Для эрмитовых форм справедливы основные факты, относящиеся к действительным К. ф.: возможность приведения к сумме квадратов, инвариантность ранга, закон инерции.

Лит.: Мальцев А. И., Основы линейной алгебры, 3 изд., М., 1970.

Квадратичная форма         
Квадратичная форма — функция на векторном пространстве, задаваемая однородным многочленом второй степени от координат вектора.

Wikipedia

Квадратичная форма

Квадратичная форма — функция на векторном пространстве, задаваемая однородным многочленом второй степени от координат вектора.

Was ist КВАДРАТИЧНАЯ ФОРМА - Definition